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The excitation of stable eigenmodes in unstable plasma turbulence, previously documented in
collisionless trapped electron mode turbulence, is shown to be a generic behavior of local
�quasihomogeneous� systems. A condition is derived to indicate when such excited eigenmodes
achieve a sufficient level in saturation to affect the turbulence, and produce changes in saturation
levels, instability drive, and transport. The condition is shown to be consistent with the results of
collisionless and dissipative trapped electron turbulence, and is further illustrated by an entirely
different model describing simple ion turbulence driven by the ion temperature gradient. The
condition suggests that all eigenmodes of the ion model affect saturation, but none dominates. This
is consistent with the results of simulations, which show nonlinear modifications to eigenmode
structure, growth rate, and transport that occur intermittently in time, despite fixed driving
gradients. © 2006 American Institute of Physics. �DOI: 10.1063/1.2168453�
I. INTRODUCTION

Turbulence in confined plasmas is driven by instabilities.
At finite amplitude, the drive need not be given by the linear
growth rate. However, this is often assumed, and the notion
is pervasive in the conceptualization of instability-driven
plasma turbulence. It is recognized, of course, that instability
is not necessarily linear. Nonlinear instability is a familiar
concept in dynamical systems,1 and has been explored in a
number of plasma models.2–7 These studies have generally
focused on subcritical instability, i.e., instability when the
system is below the linear threshold, but finite amplitude
allows free energy to be released. Above the linear threshold
�supercritical instability�, the growth rate can also be modi-
fied by finite amplitude. While methods have been developed
to treat this situation, these methods have difficulties that
have generally gone unrecognized.

Attempts to deal with the supercritical situation largely
fall into two categories. One is the concept of secondary
instability, where the linear instability creates a finite-
amplitude structure that is itself subject to further
instability.8–11 Once a structure is postulated, secondary in-
stability can be treated with linearized perturbations about
the primary structure. Most descriptions of zonal flow exci-
tation effectively fall into this category. A second approach
involves an ad hoc “nonlinear” eigenmode calculation, in
which an eigenmode is calculated in the presence of nonlin-
ear effects that are represented by linear surrogates.12,13

Anomalous viscosities fall into this category if the anoma-
lous coefficient is prescribed and not subject to active dy-
namical interaction with the turbulence. While the eigen-
modes so calculated differ from the linear eigenmode, they
remain essentially linear, modified by dissipation that is
anomalously large relative to collisional values.

The problem with the above procedures is that, in any
complete basis spanning the space of allowed collective mo-
tions of the system, they correspond to a partial sampling,
and one whose projection on the complete basis is undeter-

mined. At issue are eigenmode branches that are linearly
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damped for all wave numbers, and therefore usually ignored,
but susceptible to nonlinear excitation. The ad hoc nature of
the above procedures makes it unclear as to whether the fluc-
tuation structures they select or impose are consistent with
fluctuations excited by the nonlinearity from a complete ba-
sis set. Even though these structures modify the linearly un-
stable eigenmode, they cannot represent a complete re-
sponse, if, as in the case of zonal flows, they are a lower
dimensional manifold of the complete space. Moreover, they
remain essentially linear, or can be formulated in a straight-
forward fashion from Fourier modes on the unstable eigen-
mode branch, albeit over an extended range.

The participation of stable eigenmode branches in turbu-
lent dynamics is not academic. Multiple stable eigenmode
branches are excited and interact in three-dimensional �3D�
rotating,14 rotating stratified,15 and magnetohydrodynamic
�MHD� turbulence.16 In plasma microturbulence, this possi-
bility was suggested17 but not explored until recently when it
was shown that a damped eigenmode is excited in collision-
less trapped electron mode �CTEM� turbulence, and plays a
major role in the dynamics.18,19 A stable eigenmode has also
been invoked to explain the observed isotope scaling of
transport in the Columbia Linear Machine.20 The CTEM
problem shows that excitation of a damped eigenmode can
make radical changes to the turbulence. These include the
creation of an unconventional inverse cascade,21 a nonlinear
particle pinch,22 and the introduction of a new saturation
channel to zonal modes on the stable eigenmode branch.23,24

The zonal modes that saturate the instability are robustly
damped by collisional detrapping of trapped electrons, and
are distinct �linearly independent� from the familiar zonal
flow structures associated with the potential and a vanishing
adiabatic density.25 The familiar zonal flows constitute the
zonal component of the unstable eigenmode branch, and do
not saturate the turbulence in the CTEM model because the
zonal wave number ky =0 is marginally stable. Any treatment

that singles out and restricts itself to these zonal flows misses
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zonal modes on the second eigenmode branch and their po-
tent effect on saturation.

Given the significance of these effects, it is important to
determine whether they are unique to the CTEM model or
occur more generally. It is also important to understand the
physics by which stable eigenmodes affect saturation and
transport, and what conditions are required. This paper de-
rives general conditions applicable to any local fluid model
above the linear instability threshold, such that the saturated
state and instability drive are significantly modified by stable
eigenmodes. To test the validity and usefulness of these con-
ditions, we will apply them to the CTEM model, where a
reasonably complete picture of the physics of a stable eigen-
mode already exists. However, it is also important to assess
the value of these conditions under more general circum-
stances, for example situations with multiple stable eigen-
mode branches, including marginally stable eigenmodes.
Moreover, it is important to sample models that are different
from CTEM to begin assessing the generality of stable eigen-
mode excitation in unstable plasmas.

To this end, we introduce a simple ion drift wave model
that is nonetheless more complex than the CTEM model. In
addition to unstable and robustly damped eigenmodes, it has
a marginally stable eigenmode. This allows us to study
whether weakly damped or marginally stable eigenmodes
have an advantage over robustly damped eigenmodes, a
question of relevance to zonal flows, which are usually con-
sidered to be weakly damped. The physics of the couplings
in the ion model are completely different from those of
CTEM. Therefore, the discovery in this model of damped
eigenmode effects is an important and nontrivial �but not
final� step toward determining if such effects are present in
plasma turbulence generally. Finally, the model retains suffi-
cient simplicity to guarantee the transparency needed for ini-
tial studies of nonlinear effects that have otherwise gone un-
detected. Although the model relates primitively to ion
temperature gradient �ITG� turbulence, the relationship is in-
cidental. Modeling ITG turbulence requires additional ef-
fects, and is not the point of this paper.

We show that the nonlinear excitation of stable eigen-
modes is universal, and drives exponential growth, provided
initial levels are infinitesimal. A heuristic analysis yields a
simple condition such that a stable eigenmode affects satura-
tion under generic mode coupling. The condition is consis-
tent with behavior in both the CTEM and ion models. For
E�B advection the condition is tied to correlations that gov-
ern the growth rate, ensuring that growth rates are modified
in saturation. We also observe novel effects in the ion model.
The most striking is the appearance of intrinsic temporal
variability of growth rates and transport fluxes in fixed-
gradient turbulence. The paper is organized as follows: In
Sec. II we present and discuss the basic model. In Sec. III we
examine damped and marginally stable eigenmode excitation
and derive the condition that indicates when these eigen-
modes affect saturation. In Sec. IV we show how the condi-
tion relates to the instability drive. Section V gives conclu-

sions and implications.
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II. THE ION MODEL

The simple fluid model for turbulence driven by ion tem-
perature gradient employed in this paper is based on the fol-
lowing equations:

�1 + k2�
��

�t
− ikyvD���̂k2 − 1� + ikzu�

= − �
k�

�k� � ẑ · k��k��k−k�k�2

� �1 + k2�N�, �1�

�u�

�t
+ ikz� + ikzp = − �

k�

�k� � ẑ · k��k�u�k−k� � Nu�
, �2�

�p

�t
+ ikyvD�̂� = − �

k�

�k� � ẑ · k��k�pk−k� � Np, �3�

where vD��cTe /eB�d�ln n0� /dx is the drift velocity, �̂= �1
+�i� /�, �i=d�ln Ti� /d�ln n0� is the ratio of temperature to
density gradient scale lengths, ��Te /Ti is the ratio of elec-
tron to ion temperature, and �, u�, and p are the Fourier
amplitudes of potential, parallel ion flow, and ion pressure.
These are normalized according to ��e� /Te, u� � ṽ�i /cs,
and p��p̃i / �Pi0	��Ti /Te�, where Pi= �Pi0	+ p̃i. Length scales
are normalized to �s= �cTe /eB��mi /Te�1/2. In solving Eqs.
�1�–�3�, kz is chosen to be a constant. The reality condition
that leads to the parity constraint ��−k�=�*�k� dictates that
this constant change sign when k maps to negative values.

The linear dispersion relation for normal modes is

�3�1 + k2� + �2�*��̂k2 − 1� − �kz
2 − �*kz

2�̂ = 0, �4�

where �*=kyvD. This polynomial can be solved for the
eigenfrequencies using the exact formula for cubic polyno-
mials. Instability occurs for low ky, where there is a margin-
ally stable propagating mode and a conjugate pair of lower
frequency modes, one of which is growing and one of which
is damped. To get a sense of the branch structure, this part of
the dispersion can be approximated by the balance of the
cubic and constant terms in Eq. �4�, yielding roots given by

� j 
 sj��*kz
2�̂

1 + k2 �1/3

, �5�

where

s2 = 1, �6�

s1,3 = −
1

2
± i

�3

2
� . �7�

For higher values of ky, corresponding to �2��̂k2−1�	kz
2�̂,

all three roots are stable, and split between a high-frequency
root with �1
−�*��̂k2−1� / �1+k2� and two roots with fre-
quencies near zero. The spectrum of growth rates is shown in
Fig. 1.

There is some arbitrariness in the labeling of the roots
across the boundary dividing regions of complex and wholly

real solutions because two of the modes are degenerate at
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this boundary. We adopt the convention of using the same
label for the growing branch in the complex-root region as
for the high-frequency branch in the real-root region. A con-
vention must be adopted so that consistency is maintained
when dynamical solutions for �, u�, and p are projected onto
the eigenmodes of the three roots. This procedure is intro-
duced in the next section to enable treatment of the finite-
amplitude effects on stability and saturation.

III. EIGENMODE EXCITATION AND HEGEMONY

For systems in which multiple eigenmodes are excited,
each excited eigenmode must be tracked. This is accom-
plished by recasting the basic equations so they describe the
nonlinear evolution of each eigenmode amplitude. The ex-
pansion of the fields �, u�, and p in the basis set of the linear
eigenmodes, which we generally refer to as the eigenmode
decomposition, can be written

� p

u�

�
� = 
1�b1

a1

1
� + 
2�b2

a2

1
� + 
3�b3

a3

1
�

= �b1 b2 b3

a1 a2 a3

1 1 1
��
1


2


3
�

� M�
1


2


3
� . �8�

The original fields �, u�, and p are functions of wave number
k and time, hence so are the eigenmode amplitudes 
1, 
2,
and 
3. The columns of the matrix M are the three eigenvec-
tors, normalized so that each eigenvector has a � component
of unity. The eigenvector components aj and bj are functions
of k. They are found in the usual way, replacing � /�t with

FIG. 1. Imaginary part �growth rates� of three eigenfrequencies of the linear
dispersion relation �Eq. �4�� as a function of ky for kx=0. Growing modes are
confined to one branch for ky �0.5. All branches are subjected to
hyperviscous-type damping at high k.
−i� j in the linearized form of Eqs. �1�–�3� and solving any
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two of the three equations for u� and p in terms of �. We do
not write out expressions for aj�k� and bj�k� because the
exact forms, which we use in numerical solutions, are so
algebraically complicated that they offer little insight. Con-
sistent with the labeling introduced in the previous section,

1, 
2, and 
3 are the amplitudes of the growing, marginal,
and damped eigenmodes.

If Eqs. �1�–�3� are written vectorally as �ṗ , u̇� , �̇�
=D�p ,u� ,��+ �Np ,Nu�

,N��, the evolution equations for 
 j

are

�
̇1


̇2


̇3

� = M−1DM�
1


2


3
� + M−1�Np

Nu�

N�

� , �9�

where D is the matrix of the linear coupling, given by

D =�
0 0 − i�*�̂

− ikz 0 − ikz

0 −
ikz

1 + k2

i�*��̂k2 − 1�
1 + k2

� , �10�

and Np, Nu�
, and N� are the nonlinearities defined in Eqs.

�1�–�3�. By construction, the matrix M−1DM is diagonal,
with elements −i� j. Of greater significance is the form of the
nonlinear terms. The three nonlinearities of the original rep-
resentation are now mixed, so that linear combinations of all
three enter each eigenmode evolution equation. Moreover,
when the nonlinearities Np, Nu�

, and N� are written in terms
of 
1, 
2, and 
3, each eigenmode is driven nonlinearly by
every possible combination 
m
n with m and n each assum-
ing values of 1–3. For example, the 
3 equation is


̇3 + i�3
3 =
�a1 − a2�

�M�
Np +

�b2 − b1�
�M�

Nu�

+
�a2b1 − a1b2�

�M�
N�, �11�

where �M�=b1a2+b2a3+b3a1−b3a2−b2a1−b1a3, and

Np = − �
k�

�k� � ẑ · k��
1� + 
2� + 
3��

��b1�
1� + b2�
2� + b3�
3�� , �12�

Nu�
= − �

k�

�k� � ẑ · k��
1� + 
2� + 
3��

��a1�
1� + a2�
2� + a3�
3�� , �13�

N� = − �
k�

�k� � ẑ · k�
�k − k��2

�1 + k2�
�
1� + 
2� + 
3��

��
1� + 
2� + 
3�� . �14�

We adopt the notational convention that when aj, bj, and 
 j

are unprimed, primed, or double-primed, it is understood that
they depend on wave number k, k�, or k−k�.

To examine the excitation of damped and marginally

stable eigenmodes, consider the contribution made by the
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interaction of 
1 with itself in the three nonlinear terms of
Eq. �11�. This portion of the right-hand side can be written

N311 = − �
k�

�k� � ẑ · k�� �a1 − a2�
�M�

b1� +
�b2 − b1�

�M�
a1�

+
�a2b1 − a1b2�

�M�
�k − k��2

�1 + k2� �
1�
1�. �15�

This component of the 
3 nonlinearity is vital to 
3 evolution
because, provided the system starts from infinitesimal ampli-
tude in all eigenmodes, it causes 
3 to grow exponentially.
Under linear theory the eigenmode is damped. The growth
process is parametric instability, where the exponential
growth of unstable 
1 modes at k� and k−k� makes N311

grow exponentially, imposing an exponentially growing
force to 
3. Until 
3 becomes large enough to act back on 
1

in a significant way, N311 acts as an external force. It drives
exponential growth independent of the complex 
3 ampli-
tude, and does so until 
1 saturates. Modes on the 
1 branch
that are damped do not prevent the growth; their contribution
to N311 merely decays so that N311 is governed by wave
numbers for which 
1�
1� is growing. Although the summa-
tion in N311 ranges over positive and negative values of k�,
the summand for k�	0 does not cancel the summand for
k��0, because 
1�−k��=
1

*�k��, and the k−k� dependence
breaks symmetry. A term like N311 operates in like fashion in
every damped and marginally stable eigenmode.

Parametric instability is well known. Here it applies to
every stable eigenmode in the basis set, provided the coeffi-
cients in the forcing terms �e.g., Eq. �15�� are not all zero. No
stable eigenmode decays to zero, rather all experience expo-
nential growth to a level determined by saturation balances.
This assertion is quite general, hence we provide further ex-
planation and essential qualifications. The following are writ-
ten as general statements, but are illustrated mathematically
using the ion model.

1. Parametric growth occurs provided initial amplitudes are
sufficiently small to make all nonlinear terms much
smaller than the linear terms initially. This guarantees
that all damped eigenmodes initially decay at the linear
damping rate, and marginal modes remain constant �af-
ter a transient that sets up the eigenmode phases�.

2. While damped eigenmodes are decaying from initial val-
ues, terms like N311 are growing exponentially. Because
of 1 above, some time elapses before the exponential
growth of terms like N311 overtakes the decay from the
initial level. If there are multiple eigenmode branches
with unstable modes, each contributes a term like N311 to
the evolution of the damped 
3 eigenmode. However,
the beating of modes on the fastest growing branch will
dominate the parametric drives from other unstable
branches. Nonlinear terms in which a growing mode
beats with a damped or marginal mode, or damped or
marginal modes beat with each other, are smaller than
terms in which two growing modes interact. This is be-
cause growing modes increase exponentially from their

initial value, whereas damped modes decrease exponen-
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tially until terms like N311 have grown sufficiently to
exceed linear terms.

3. The evolution of 
3 under parametric instability is ob-
tained by solving


̇3 = − i�3
3 + �
k�

N̂311 exp�− i��1� + �1��t� , �16�

where unprimed, primed, and double-primed quantities
indicate dependence on wave numbers k, k�, and k−k�,
and

N̂311 = − �k� � ẑ · k�� �a1 − a2�
�M�

b1� +
�b2 − b1�

�M�
a1�

+
�a2b1 − a1b2�

�M�
�k − k��2

�1 + k2� �
10� 
10� . �17�

In writing Eqs. �16� and �17�, 
1�k , t� is approximated by
its linear evolution, 
1�k , t�=
10 exp�−i�1t�, consistent
with 1 and 2 above. The solution of Eq. �16� is


3 = �
k�

N̂311�exp�− i��1� + �1��t� − exp�− i�3t��
− i��1� + �1� − �3�

+ 
30 exp�− i�3t� . �18�

For t� ��1�+�1��
−1, �3

−1, the first term grows linearly in
time from zero value �
3� t�. Once t
�3

−1, it grows

exponentially from an amplitude �N̂311/ ��1�+�1�−�3�.
The second term describes the decay from the initial
level. Under 1,

�3
30 � �
k�

N̂311. �19�

This guarantees that the decaying second term dominates
the evolution initially.

4. The first term of Eq. �18� overtakes the decaying second
term before the saturation of 
1 or 
3, i.e., while the
parametric instability approximation remains valid. This
follows because saturation of 
1 requires that nonlinear
terms become larger than the linear term of the 
1 equa-
tion, −i�1
1, which is growing exponentially in time.
The first term of Eq. �18� overtakes the second term
when a nonlinear term becomes larger than a linear term
which is decaying exponentially.

5. The parametric instability approximations that make
Eqs. �16�–�18� valid remain in force until either 
1 satu-
rates �a nonlinear term balances −i�1
1�, or until an-
other nonlinear term in the 
3 equation becomes as large
as N311.

6. The entire system saturates when nonlinearities in the
unstable eigenmode equations become as large as the
linear drive terms, because the latter supply instability
free energy. It is possible that nonlinear terms involving
stable eigenmodes are smaller than those involving
growing eigenmodes. In this case the stable eigenmodes,
although subject to nonlinear, exponential growth, do
not reach a sufficient level to affect saturation signifi-
cantly, and can be ignored in analyses of saturation and

calculations of growth rates and transport fluxes.

AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



022307-5 Role of stable eigenmodes in saturated local… Phys. Plasmas 13, 022307 �2006�

D

Damped eigenmodes cannot be ignored if any nonlinear term
involving a damped eigenmode becomes large enough to af-
fect a saturation balance.

Numerical solutions of Eqs. �1�–�3� show that both the
damped and marginally stable eigenmodes are important in
saturation. One indication is the evolution of the fluctuation
energy,

U = �
k

Uk = �
k

��1 + k2����2 + �u��2 + �p�2� . �20�

We express U in terms of the eigenmode amplitudes 
m us-
ing Eq. �8�,

U = �
k
��

m=1

3

��1 + k2��am�2 + �bm�2 + �cm�2��
m�2

+ 2 Re �
m=1

2

�
n	m

3

��1 + k2��aman
*� + �bmbn

*� + �cmcn
*��

��
m
n
*	� . �21�

Figure 2 shows the time evolution of the total fluctuation
energy and the three autocorrelation terms �proportional to
�
m�2� of Eq. �21�, generated from a numerical solution. Ex-
ponential growth is clearly evident. In the last phase of evo-
lution, the sum of the autocorrelation terms exceeds 3U.
Consequently, the sum of the cross-correlation terms �pro-
portional to �
m
n

*	� is negative and its magnitude exceeds
2U. Virtually all terms of Eq. �21� appear to make a signifi-
cant contribution to U.

Before showing the results of that comparison, it is use-
ful to develop a criterion that identifies when stable eigen-
modes affect saturation. Our criterion uses only model pa-
rameters, i.e., linear and nonlinear coupling coefficients,
allowing simple inspection to determine if stable eigenmodes
are important. The criterion also provides insight into how
damped eigenmodes break the hegemony of unstable eigen-
modes. The criterion is heuristic and generic, but will be

FIG. 2. Time evolution of the total energy, and the energy associated with
squared eigenmode amplitudes 
1

2, 
2
2, and 
3

2.
tested against solutions of the ion and CTEM models.
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Consider two eigenmodes x1 and x2 whose dominant
coupling can be represented by

ẋ1 = 1x1 + C1x1
2 + D1x1x2, �22�

ẋ2 = − 2x2 + C2x1
2 + . . . . �23�

We assume that 1	0 and 2�0. This makes x1 linearly
unstable and x2 linearly damped or marginally stable. The
term C2x1

2 drives parametric instability in the stable eigen-
mode. These need not be the only two eigenmodes in the
system or the only couplings, but they are the couplings that
describe how a parametrically unstable eigenmode that is
linearly stable most directly feeds back on an unstable eigen-
mode. If there are other eigenmodes, x2 is the eigenmode that
is most strongly driven by the parametric process, i.e., C2 is
larger than the parametric coupling in the equations for the
other eigenmodes. The term C1x1

2 is normally assumed to
saturate the instability when stable eigenmodes are ignored.
In this simple representation we are not tracking a spectrum
of Fourier modes. The unstable eigenmode first grows lin-
early according to

x1 = xi exp�1t� , �24�

where xi is an initial amplitude. The second eigenmode ex-
periences the combination of initial decay and parametric
growth described previously, and evolves according to

x2 =
C2xi

2

2 + 21
�exp�21t� − exp�− 2t�� + xi exp�− 2t� ,

�25�

where for simplicity we have assumed that x2 has the same
initial value as x1.

We now consider the threshold under which x2 affects
saturation. This is a requirement imposed on the first equa-
tion, because that is where the instability resides. The stable
eigenmode affects saturation when

D1x1x2 
 C1x1
2. �26�

When Eqs. �24� and �25� are substituted into this expression
to yield

D1C2xi
2

�2 + 21�
exp�21t� 
 C1xi exp�1t� , �27�

it represents the condition under which a stable eigenmode
reaches a sufficient level via parametric excitation to affect
saturation. In making the substitution we retain only the ex-
ponentially growing part of Eq. �25�. The condition now de-
pends on time. We are interested in the time at saturation,
which we define as the time required for the exponential
linear growth of Eq. �22� to bring the standard nonlinear term
C1x1

2 up to the level of the linear term. Therefore, at satura-
tion 1
C1xi exp�1t�, allowing time to be eliminated in the
threshold condition. The condition expressed in Eq. �26� for
the threshold of stable eigenmode effects in saturation then

becomes
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Pt �
D1C2

C1
2�2 + 2/1�


 1. �28�

This condition depends only on nonlinear coupling coeffi-
cients and growth rates, with the latter deriving from linear
coupling coefficients. However, the nonlinear coupling is be-
tween modes on distinct branches of the dispersion relation,
hence the nonlinear coefficients also depend on the linear
coupling coefficients through the eigenmode decomposition
matrix M. Initial levels do not enter because they were as-
sumed equal for all eigenmodes.

According to Eq. �28�, the couplings that drive the
damped eigenmode parametrically, and allow it to affect the
growing eigenmode, must be competitive with the coupling
of Kolmogorov-like spectral transfer on the growing branch
�given by C1x1

2�. The competition is one of straightforward
ratios. If the parametric drive is weaker than the Kolmogorov
transfer, C2 /C1�1, the coupling of the damped branch in the
evolution of the unstable eigenmode must be that much
stronger, i.e., D2 /C1
C1 /C2	1. However, there is also an
important dependence on growth and damping rates. This
factor parametrizes the ratio of nonlinear interaction time to
the time required to achieve saturation. If the damped eigen-
mode is heavily damped relative to the growth of the un-
stable eigenmode, 2 /1�1, the couplings of the damped
branch must become significantly stronger �C2D1 /C1

2�1�
for it to have an effect. Greatly increasing the damping rate
of a damped branch does not negate its exponential growth
or change the rate of exponential growth. Instead, as is clear
from Eq. �25�, it gives it such a small amplitude factor that it
becomes difficult for it to compete with Kolmogorov transfer
on the time scale of saturation. Note that the damping rate
only becomes a significant factor once it exceeds the insta-
bility growth rate. An eigenmode with 2
1 is essentially
at no disadvantage relative to an eigenmode with 2
0. This
is an important observation. With 2
1 there is a potent
energy sink for saturation, yet the damping is not too large to
prevent parity in energy balances, provided the coupling fac-
tors are favorable. This typifies both CTEM and the ion
model. Moreover, it implies that zonal modes of a damped
eigenmode can have a greater impact than conventional
zonal modes �marginally stable or weakly damped�. This too
is observed in CTEM.

As far as couplings go, the threshold condition of Eq.
�28� is intuitively reasonable. However, the couplings are

TABLE I. Summary of couplings in ion model, gr
growing eigenmode branch and a second mode on th
should be multiplied by 10−3.

Wave number Growing

C1 C2

kx ky kx� ky� �N111� �N311�

0.1 0.1 −0.2 0.2 3.8 1.5

0.3 0.4 0.4 0.3 54 61

0.5 0.6 −0.2 0.2 46 12
nontrivial because they apply to generally ignored stable
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eigenmodes. An example of C2 for the ion model is N311 �Eq.
�15��. The expression for C1 and D1 are similarly complex.
All depend on eigenvector components. Given this complex-
ity it is worth checking that Eq. �28� properly describes sys-
tems where stable eigenmodes play a significant role in satu-
ration and those where they do not. For CTEM
turbulence,19,23,24 2 /1
1, C2 /C1
1, and D1 /C1
�−2

�1, where � is the small ratio of collision frequency to
diamagnetic frequency. Thus Pt=C2D1 /C1

2�2+2 /1�
=O��−2��1, indicating that the damped branch does not
merely become as important as the growing branch in satu-
ration, but that it dominates saturation, rendering the Kol-
mogorov saturation channel unimportant.24 This prediction is
observed in simulations, and verified by solving for the satu-
ration level in a detailed statistical closure theory. The
CTEM model also holds in the collisional limit. There
C2 /C1
1, while D1 /C1
�, where ��1 in the collisional
limit. However, the normalized damping rate is larger, of
order �2. Consequently Pt=O��−1��1, and the damped
branch is not predicted to play a role in saturation. This also
was verified in simulations of the 2-field trapped electron
mode system.19 Note that in the collisional case the damped
branch coupling is potent, but the parametric growth cannot
reach a sufficiently high level because of the strong damping.
It is also worth pointing out that C1 and C2 are coefficients of
a coupling product, 
1�k��
1�k−k��, that is symmetric under
the exchange k�↔ �k−k��. If the leading order of C1 and C2

are constant, this order vanishes in the sum over k�, and the
next higher order �which will depend on k� or 1/k�� must be
used in Eq. �28�. This occurs in the CTEM model, effectively
increasing D1 /C1.

The complexity of the coupling coefficients in the ion
model makes it difficult to evaluate Eq. �28� by inspection.
Accordingly, we have evaluated the coupling coefficients nu-
merically for several wave numbers and have summarized
the results in Table I. The table gives the values of Nijm for
values of i, j, and m that represent the parametric driving of
damped and neutral modes �N311 and N211�, the forcing of
damped and neutral modes on the growing mode �N113, N131,
N112, and N121�, and the Kolmogorov transfer involving in-
teractions of modes solely on the growing branch �N111�.
These three classes of interactions are represented in the heu-
ristic model by C2, D1, and C1, respectively. The table also
gives the largest value estimated for the threshold parameter

according to interactions between a mode on the
wing, damped, or neutral branch. The values of Nijm

ped Neutral

D1 C2 D1

3� �N131� �N211� �N112� �N121� Pt

3.5 2.4 1.4 4.3 0.35

80 1.2 30 76 0.56

123 6.1 12 34 0.23
ouped
e gro

Dam

�N11

1.2

74

46
Pt, given by the right-hand side of Eq. �28�. The wave num-
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bers correspond to cases in which the neutral mode plays a
slightly larger role in saturation than the damped mode �kx

=0.1, ky =0.1�, the damped mode plays the larger role �kx

=0.3, ky =0.4�, and a case in which the growth rate of the
parametric drive is weak �kx=0.5, ky =0.6�. The results indi-
cate that both damped and neutral eigenmodes play a com-
parable and significant role in saturation, but that neither
achieves the hegemony of the damped eigenmode in CTEM
turbulence.

This assessment is borne out by simulation results, the
most striking feature of which is a robust, intrinsic temporal
intermittency in all measured quantities. The intermittency is
evident in standard measures, including the probability dis-
tribution function �PDF� and the Hurst exponent.26 Figure 3
shows Hurst exponents for Fourier modes with kx=0 and
various ky values. The exponent lies between 0.7 and 0.9 in
all cases, indicating persistent long time correlations on
scales of at least 60 time steps. For reference, the nonlinear
decorrelation �eddy turnover� time of the ky =0.3 mode is of
order 2 time steps, as inferred from the discussion of Fig. 4
below. Hurst exponents around 0.5 are the norm for Gaussian
correlations. Enhanced values in the range of 0.7 and above
have been linked to system-scale correlations mediated by
global avalanche-like transport events in systems with relax-
ing gradients and self-organized criticality.27 Here the driv-
ing gradient is rigidly fixed. Figure 3 indicates a trend toward
less intermittent behavior with increasing wave number. This
is consistent with transition at high k from the wave-
dominated regime, and a corresponding diminution of the
importance of wave eigenmode properties. However, the
long time-scale correlations of the modes in Fig. 3 dominate
in spectrum averaged quantities such as energies and trans-
port fluxes. Figure 5 shows the PDF of �kyb1��k�2, which is
a weighted energy proportional to the quasilinear heat flux.
There is a distinct deviation from a Gaussian in the tail. This
is produced by the long time correlations detected through
the Hurst exponent in Fig. 3.

FIG. 3. Hurst exponents for Fourier modes with kx=0 and ky =0.1, 0.2, 0.3,
0.4, and 0.5.
Two features of time histories that relate to the intermit-
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tency are worth discussing. First, fluctuations radically
change character at random intervals longer than a nonlinear
correlation time. Second, growth rates, transport fluxes, and
quantities tied to the free-energy source, which is destabiliz-
ing and rigidly fixed, intermittently transition from positive
to negative values. Neither behavior was observed in CTEM
turbulence, which nonetheless had nontrivial cross-
correlation dynamics. Both are consistent with a situation in
which multiple eigenmode branches compete for hegemony
on a nearly equal footing in the energy balances of satura-
tion, as suggested by Table I. An example of the first behav-
ior is the evolution of the phase of cross correlations between
eigenmodes. Figure 4 shows the evolution of the phase of
�
1�k�
2

*�k�	. During certain times, i.e., for 0� t�7 and t

FIG. 4. Time evolution of the phase of �
1�k�
2
*�k�	 for the mode kx=0,

ky =0.3.

FIG. 5. Probability distribution function for �kyb1��k�2 constructed from the

time history. The least-squares-fitted Gaussian is plotted as a benchmark.
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	22, the phase appears locked to zero in an average sense.
The rms value of random fluctuations about the mean is
0.5 radians, and their time scale is a nonlinear decorrelation
�eddy turnover� time. For 7� t�9 and 20� t�22 the phase
evolution is radically different with rotation at a roughly con-
stant rate through the angle 2�. In between the periods of
rapid rotation, the rotation slows and changes sign, but does
not show evidence of incoherence. The eigenmode cross cor-
relation in CTEM turbulence evinces only locked behavior.
There the mean angle is zero, consistent with a simple rep-
resentation of the damped eigenmode as an oscillator driven
continuously by the sinusoidal external forcing of two
coupled unstable eigenmodes. The rms amplitude of incoher-
ent fluctuations about the mean does not exceed 0.3 radians.

Examples of growth rates and fluxes showing the second
type of behavior will be given in the next section. The tem-
poral intermittency of the ion model, and its absence in
CTEM turbulence, seems to be consistent with the near unity
values of Pt for all eigenmodes in the former, and the large
value of Pt in the latter.

IV. INSTABILITY DRIVE AND TRANSPORT

When mode coupling terms involving stable eigenmodes
enter saturation balances on a par with terms involving only
the unstable eigenmode, it is likely that the growth rate is
significantly modified. This follows from the simple obser-
vation that the growth rate and the nonlinearities that govern
saturation all depend on quadratic correlations of the fluctu-
ating fields. To formulate the growth rate as a general prop-
erty of the system, not just of the linearly unstable eigen-
mode, it is derived from the time derivative of the fluctuation
energy. The time derivative captures dissipation, including
from which it is reasonable to conclude that all nine terms of
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the dissipation by which energy is introduced into the turbu-
lence from the driving gradients, and removed, for example,
by collisional processes. For conservative nonlinearities like
Np, Nu�

, and N�, spectral energy transfer rates drop out of the
derivative when energy is properly formulated. The deriva-
tive therefore constitutes a generalized growth rate, valid at
both infinitesimal and finite amplitude. Returning to Eq. �20�
for the fluctuation energy, we take the time derivative to
obtain

�U

�t
= �

k

�kz Im�pu�
*	 + vDky�̂e Im��p*	 − DUk� , �29�

where D is the net dissipation of viscosities and collisional
diffusivities that are included for numerical simulation.

The net input rate of energy at each wave number, ex-
clusive of conserved spectral energy transfer, is the summand
of this expression divided by the energy Uk, and is labeled
k

nl:

k
nl =

kz Im�pu�
*	 + ky�̂e Im��p*	

Uk
− D. �30�

The first term of the numerator represents free energy re-
leased to ion acoustic motion through parallel compressibil-
ity. The second term represents the free energy of the ion
temperature gradient released through E�B advection of the
gradient. The second term tends to dominate for linearly un-
stable modes and typical wave numbers. This term depends
on the same coupling of fields as in the nonlinearity Np,
hence it introduces into k

nl terms that correspond to cou-
plings in each saturation equation. Writing Eq. �30� in terms
of the eigenmode amplitudes,
k
nl = �Im��
1�2�b1a1

*kz + b1
*ky�̂e� + �
2�2�b2a2

*kz + b2
*ky�̂e� + �
3�2�b3a3

*kz + b3
*ky�̂e� + �
1
2

*	�b1a2
*kz + b2

*ky�̂e� + �
1
*
2	�a1

*b2kz

+ b1
*ky�̂e� + �
1
3

*	�b1a3
*kz + b3

*ky�̂e� + �
1
*
3	�a1

*b3kz + b1
*ky�̂e�

+ �
2
3
*	�b2a3

*kz + b3
*ky�̂e� + �
2

*
3	�a2
*b3kz + b2

*ky�̂e���Uk
−1 − D, �31�
the growth rate is revealed as potentially far more compli-
cated than Eq. �30� suggests. This complexity vanishes if the
unstable eigenmode is the only eigenmode of consequence,
i.e., 
2→
3→0. Then Eq. �31� becomes

k
nl →

�
1�2 Im�b1a1
*kz + b1

*ky�̂e�
�Uk�
2=
3=0

− D � k
linear, �32�

and the linear growth rate is recovered. However, the four
terms ky�̂e Im�b2

*�
1
2
*	+b1

*�
1
*
2	+b3

*�
1
3
*	+b1

*�
1
*
3	� are

part of D1 in the heuristic model, and Im b1
*ky�̂e�
1�2 is part

of C1. The values of Pt in Table I indicate that these terms all
contribute significantly to the growth rate. The values of Pt

also indicate that all three eigenmodes broker saturation,
k
nl contribute in a meaningful way. Clearly, there are hidden

degrees of freedom �i.e., sources of variability� not evident in
the simple expression of Eq. �30�.

This view is further supported by Fig. 6, which shows
the time history of k

nl for a linearly unstable wave number.
This quantity is extremely oscillatory, with fluctuations that
are much larger than the mean and cause the growth rate to
alternate from positive to negative values. The time average,
computed over the full time domain of the plot, is indicated
by the smaller of two constants. The linear growth rate for
this wave number is larger and also shown. The time domain
is very long compared to that of Fig. 4, so that the time scale
of variation evident in the figure is 20 time units or more.
Recall that the nonlinear correlation time �eddy turnover

time�, identified as the time scale of fluctuations about the
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mean phase in the locked regime of Fig. 4, is approximately
two time units. Hence, the fluctuations in Fig. 6 represent
events with persistent correlations, on the order of 10 non-
linear decorrelation times or more.

To better appreciate the variability evident in this plot,
we observe that growth rates in fixed gradient turbulence are
generally assumed to be constant. The reason is simple: in
k

linear, as obtained from Eq. �31� or �32� by setting 
2=
3

=0, the numerator and the denominator Uk are each propor-
tional to �
1�2. This factor cancels out to yield an expression
that is independent of amplitude. As such, it depends only on
constants, provided the driving gradients remain fixed. Al-
lowing for nonlinear effects, the derivation of k

linear from k
nl

shows that k
nl remains constant if any one eigenmode domi-

nates Eq. �31�. Moreover, even with all eigenmodes present,
and accounting for fluctuations about mean values, if the
cross correlations are phase locked �stationary�, and all cor-
relations have fluctuations whose rms value is like those of
the locked phase in Fig. 4, the growth rate should be station-
ary with small fluctuations that vary on the nonlinear corre-
lation time scale. The extreme variability of Fig. 6 requires
cross correlations whose phases are not locked, and that enter
the dominant coterie of the growth rate expression. It is not
surprising that the largest time scale of the growth rate varia-
tion is the time scale over which cross phases remain locked
or unlocked. The growth rate variability is likely facilitated
by the transitional values of Pt in Table I. All eigenmodes
compete, but none dominate, precluding phase locking for
indefinite time periods.

Another feature of Fig. 6 is the reduced value of the
average growth rate relative to the linear growth rate, repre-
senting a suppression of the linear instability for this wave
number. If there is phase locking, it is possible for the cross

FIG. 6. Time evolution of k
nl for kx=0.3, ky =0.4. Also plotted are the time

average of k
nl over the entire domain, and the linear growth rate.
correlations to be large and positive and thereby increase the
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linear growth rate, as occurs for 120� t�180. It is also pos-
sible for the cross correlations to be large and negative as
occurs transiently at various times, thereby decreasing the
growth rate by more than the damping rate of the damped
eigenmode. However, if locked phases with these properties
cannot persist, the cross-correlation contributions to the
growth rate can be expected to phase average to zero over a
long time. If this happens, the only terms contributing to the
growth rate for long time averages are the first three terms of
Eq. �31�. The first represents the growth of the unstable mode
and is positive for all times if the wave number is in the
unstable range. The second represents the marginal mode and
is close to zero. The third represents the damped mode and is
negative. With the damped eigenmode excited, its negative
contribution to Eq. �31� lowers the growth rate, as observed.

The reduction of linear growth rate is actually consider-
ably more pronounced in modes that are more unstable. Fig-
ure 7 shows the variation of k

nl with ky for kx fixed, averaged
over the entire time domain of Fig. 6. The linear growth rate
is also plotted. The value of k

nl for wave numbers throughout
the unstable range is approximately constant while the most
unstable modes have linear growth rates that are three times
as large. �For the mode described in Fig. 6 the wave number
is close to the instability boundary and its smaller linear
growth rate is not so much larger than k

nl�. For wave num-
bers just beyond the unstable range, there is weak nonlinear
instability. This occurs because the cross correlations are
positive and larger than the first three terms of Eq. �31� on
average. Calculation of the growth rate for kx=0 shows that
for ky in the lowest wave-number part of the unstable range,
k

nl is essentially unchanged from k
linear.

The correlations of growth rate and transport are closely

FIG. 7. Long-time averaged growth rate spectrum in ky for kx=0.3, showing
k

nl and k
linear.
related. The time-averaged reduction of the growth rate by
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the damped eigenmode should also reduce transport fluxes.
The ion model allows transport of parallel momentum and
heat. We consider the thermal flux given by

Q = �
k

ky Im��*p	 . �33�

This flux is evaluated from the numerical solutions for p and
�* at each wave number. The quasilinear flux is obtained in
a similar way except that instead of taking the actual field
amplitude for p, the eigenvector of the linearly unstable
eigenmode, b1�, is used and ���2 is taken from numerical
solutions. Time histories of the true flux and quasilinear flux
are compared in Fig. 8. The true flux follows the quasilinear
flux initially while amplitudes remain below the threshold
for nonlinear effects. After saturation the true flux is strongly
reduced and shows bursty behavior, despite fixed gradients.
Between bursts the flux is nearly zero. During bursts it is
reduced by a factor of 2 to 4, but also has brief negative
transients.

The PDF of the flux is shown in Fig. 9. The stronger tail
enhancement relative to the quasilinear flux indicates that
long time correlations in individual modes at low wave num-
ber, as depicted in Fig. 3, have a disproportionately larger
effect on the flux cross correlation ��*p	 than on the auto-
correlation b1���2. This can be understood from the expres-
sion of the flux in terms of the eigenmode amplitudes,

Q = �
k

ky�̂e Im��
1�2b1
* + �
2�2b2

* + �
3�2b3
*

+ �
1
2
*	b2

* + �
1
*
2	b1

*

+ �
1
3
*	b3

* + �
1
*
3	b1

* + �
2
3
*	b3

* + �
2
*
3	b2

*� . �34�

FIG. 8. Time evolution of the quasilinear heat flux and true heat flux for
long times. The true flux is both smaller and more bursty. Driving gradients
are fixed.
The flux bursts have a duration of tens of nonlinear correla-
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tion times, and are thus tied to locking and unlocking of
cross phases, just as the growth rate variability. Phase rota-
tion mixes the contribution of cross correlations in Eq. �34�.
The remaining autocorrelation terms can also cancel, de-
pending on amplitudes, because b2

* and b3
* are negative

whereas b1
* is positive. The quasilinear flux, on the other

hand, is positive definite. Its cross-correlation terms also
phase mix but its autocorrelation terms are positive definite.
As a result, the quasilinear flux is larger and has a positive
value when mixing is strong. The exact flux tends to be near
zero when mixing is strong, accentuating the bursts that oc-
cur with locking and enhancing the contribution of long time
correlations. This description is simplified and the dynamics
merits further scrutiny, not in the least because the variability
here attributed to phased interactions between eigenmodes
bears a striking superficial resemblance to variability found
in systems with evolving near-critical profiles and nonlocally
correlated transport.27 Profile relaxation and nonlocal effects
are not present here and play no role in the dynamics. We
anticipate that part of the difference between the quasilinear
and true flux scales independently of LT, and therefore rep-
resents a nonlinear heat pinch.22

V. CONCLUSIONS

We have undertaken a consideration of the role of stable
eigenmodes in the saturation, instability, and transport in sys-
tems for local, quasihomogeneous drift turbulence described
by multiple fields. From a heuristic description of parametric
excitation and the nonlinear coupling between eigenmodes,
we have developed a threshold condition indicating when
stable eigenmodes can cause significant changes in saturation
dynamics. We have applied this condition to prior results

FIG. 9. Probability distribution of the heat flux. The non-Gaussian tail is
more pronounced than it is in the quasilinear flux, as explained in the text.
The least-squares-fitted Gaussian is plotted as a benchmark.
from collisionless and dissipative trapped electron turbu-
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lence, and to new results from a simple 3-field model for ion
turbulence driven by ion temperature gradient.

We conclude that stable eigenmodes are always nonlin-
early destabilized through parametric excitation arising from
the beating of two coupled modes on the unstable eigenmode
branch. Initial levels must be sufficiently low to yield a re-
gime of linear growth. The growth rate of parametric excita-
tion is exponential, with an amplitude governed by the in-
verse of the additive sum of unstable eigenmode growth rates
and stable eigenmode damping rate. If time to saturation is
factored out, the amplitude factor depends on the ratio of
damping rate to growth rate. As long as the damping is no
larger than the growth, this factor does not strongly affect
stable eigenmodes. If the damping is stronger, the stable
eigenmode may not affect saturation. The question of
whether stable eigenmodes affect saturation is also one of
coupling strengths The coupling of interacting unstable
eigenmodes to stable branches, and the feedback of nonlin-
early excited stable eigenmodes on the evolution of the un-
stable eigenmode, must be large enough to maintain parity
with Kolmogorov-like spectral transfer. The correlations that
determine nonlinear coupling also govern the extraction of
instability free energy and transport fluxes, although the re-
lationship is not one-to-one. It is likely that if stable eigen-
modes affect saturation they will also affect the instability
drive and transport.

The nonlinear couplings involving stable eigenmodes are
directly related to the structure of eigenvectors forming a
complete basis set. For CTEM turbulence this coupling is
very strong and the stable eigenmode dominates the satura-
tion dynamics. In the collisional limit this coupling is weak-
ened somewhat but remains stronger than Kolmogorov trans-
fer. However, the stable eigenmode damping rate is very
large compared to the instability growth rate, and the stable
eigenmode is unable to achieve a sufficient level to affect the
turbulence. This dichotomy of behavior is captured in a pa-
rametrization of the threshold condition via a threshold pa-
rameter Pt. For CTEM turbulence Pt�1, while for the col-
lisional limit Pt�1. For the ion model Pt�1 for all stable
eigenmodes. These transitional values of Pt are associated
with the following:

1. The damped and marginally stable eigenmodes are ex-
cited to significant levels and all participate in satura-
tion, instability, and transport.

2. Eigenmode cross correlations, the nonlinear growth rate,
and transport fluxes are temporally intermittent. The
cross phases oscillate between nonlinearly locked states
and rotation. Multiple cross correlations enter the
ownloaded 13 Feb 2006 to 128.104.165.60. Redistribution subject to 
growth rate and transport fluxes, making them highly
bursty despite fixed driving gradients.

3. On average the cross correlations phase mix to zero. The
growth rate and fluxes are then governed by the compe-
tition between autocorrelations of the growing and
damped eigenmodes. These nearly balance, resulting in
strongly reduced instability drive and transport. We hy-
pothesize that the observed temporal intermittency is fa-
cilitated by transitional values of Pt. Stable eigenmodes
are important in saturation and transport, but none is
sufficiently strong to acquire the hegemony characteris-
tic of CTEM turbulence.
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